Penrose is a platform that enables people to create beautiful diagrams just by typing notation in plain text. The goal is to make it easy for nonexperts to create and explore highquality diagrams and provide deeper insight into challenging technical concepts. We aim to democratize the process of creating visual intuition.
Usage
You can try Penrose in your browser without any installation. For a more detailed stepbystep introduction, check out our tutorials. Or, for more referencestyle information, take a look at our documentation.
Example
Here's a simple Penrose visualization in the domain of set theory.
It's specified by the following trio of Domain, Substance, and Style programs
(with variation MonsoonCaterpillar95943
):

setTheory.domain
:type Set predicate Disjoint(Set s1, Set s2) predicate Intersecting(Set s1, Set s2) predicate Subset(Set s1, Set s2)

tree.substance
:Set A, B, C, D, E, F, G Subset(B, A) Subset(C, A) Subset(D, B) Subset(E, B) Subset(F, C) Subset(G, C) Disjoint(E, D) Disjoint(F, G) Disjoint(B, C) AutoLabel All

venn.style
:canvas { width = 800 height = 700 } forall Set x { shape x.icon = Circle { } shape x.text = Equation { string : x.label fontSize : "32px" } ensure contains(x.icon, x.text) encourage norm(x.text.center  x.icon.center) == 0 layer x.text above x.icon } forall Set x; Set y where Subset(x, y) { ensure disjoint(y.text, x.icon, 10) ensure contains(y.icon, x.icon, 5) layer x.icon above y.icon } forall Set x; Set y where Disjoint(x, y) { ensure disjoint(x.icon, y.icon) } forall Set x; Set y where Intersecting(x, y) { ensure overlapping(x.icon, y.icon) ensure disjoint(y.text, x.icon) ensure disjoint(x.text, y.icon) }
Contributing
See CONTRIBUTING.md
.
License
This repository is licensed under the MIT License.